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The stability of ink-jet printed lines of liquid
with zero receding contact angle
on a homogeneous substrate
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(Received 15 March 2002 and in revised form 5 September 2002)

We have studied the stability of ink-jet printed lines of liquid with zero receding
contact angle on a homogeneous substrate. Such lines can become unstable by
forming a series of liquid bulges, at various wavelengths, connected by a ridge of
liquid. The instability was studied with a simple dynamic model. It was shown that
the line becomes unstable when the contact angle of the liquid with the substrate is
larger than the advancing contact angle. This condition, however, is not a sufficient
condition. When the transported flow rate is sufficiently small compared to the applied
flow rate a printed line can be shown to be stable, i.e. the width of the printed line
is constant. This was found to depend on the advancing contact angle of the liquid
over the substrate.

1. Introduction
In the electronics industry there are numerous products where patterns of a

functional material have to be applied. At present the standard technology used
to make these patterns is photo-lithography, which consists of several steps. First, a
continuous layer of the functional material is applied. Then a uniform photo-resist
layer is spin-coated on top of the functional material, where the resist is cross-linked
during spinning. With a photo-mask a light pattern is applied on the resist, which
breaks up the cross-linked bonds that are in contact with the light. After rinsing, a
resist pattern remains. Now the substrate is ready for an etching step, where the resist
pattern protects the functional material from the etching solution. Finally the resist is
stripped and a pattern of the functional material remains. In spite of the many steps
involved, photo-lithography is a very robust process and it is succesfully used to make
patterns as small as 0.1 µm for the IC industry. On the other hand patterns of order
100 µm are also made with this technology.

At present the electronics industry is interested in using selective patterning tech-
niques to replace photo-lithography in flat display applications, where the substrate
is non-porous.

With microcontact printing a stamp is used to print patterns of a monolayer on
a substrate. The stamp is made with photo-lithographic techniques and the printed
patterns can be as small as sub-micron, as is described in the review by Xia &
Whitesides (1998). The monolayer can be used as a sacrificial mask or to locally vary
the wetting properties. With this printing technique the number of steps in making
a pattern can be substantially reduced. Although microcontact printing is a very
interesting technique it is still in the research phase.
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Ink-jet printing is, due to the ongoing miniaturization and flexibility, a very
promising additive patterning technique with a current minimum pattern size of
order 30 µm. Although this is considerably larger than photo-lithography there
are, due to its additive character, very interesting applications such as printing of
metal tracks, colour filters for LCD displays and also printing of polymer solutions
for light-emitting polymer displays such as described in Shimoda et al. (1999) and
Duineveld et al. (2001) and polymer electronics, such as reported by Sirringhaus et al.
(2000).

Nowadays ink-jet printing is very common in the graphics industry, but it has
not yet entered mass manufacturing in the electronics industry as the demand
on the quality of the printed patterns is much tighter. It is expected, however,
that within a few years time the technology will also be used in the electronics
industry.

The subject of this paper is ink-jet printing of a line of liquid on a flat ho-
mogeneous substrate. It is well known that a line of liquid on a flat substrate
can be unstable, depending on the boundary conditions of the moving contact
line. The first theoretical work was performed by Davis (1980) and Sekimoto,
Oguma & Kawasaki (1987). An experimental verification including a nice one-
dimensional model was presented by Schiaffino & Sonin (1997). When the contact
angle θ of the liquid with the substrate is constant and the contact line is free
to move, a liquid line is unstable for all θ . An example of such a boundary
condition is the printing of a line of water on a flat substrate reported by Schiaffino
& Sonin (1997). With a fixed width the line will be unstable when θ > π/2.
This boundary condition was demonstrated by Schiaffino & Sonin (1997) when
printing hot melted drops of wax on a cold substrate. Both boundary conditions
are extensions of the classical instability of a cylinder of liquid studied by Rayleigh
(1878).

In this paper the boundary condition of the liquid with the substrate is different
from those previously reported. Our liquid has a zero receding contact angle with the
substrate, i.e. the liquid does not dewet the substrate. The advancing contact angle of
the liquid is finite, hence the liquid is said to partly wet the substrate. This contact
angle hysteresis gives rise to another type of instability. In general, suspensions of
small spheres in a solvent can have a zero receding contact angle. Examples of this
are given by Deegan (2000).

We present several experiments with a model liquid on substrates with different
surface conditions. Depending on the substrate and experimental conditions three
different patterns were observed, figure 1. Figure 1(a) is obtained with a boundary
condition of a (nearly) constant contact angle of the liquid with the substrate. The
printed line breaks up, as expected, into separate drops. This instability can be
described with the known theory, see Davis (1980) and Schiaffino & Sonin (1997).
The other experiments were performed with a zero receding contact angle and two
different advancing contact angles. Now a line may become unstable by forming a
series of liquid bulges connected by a ridge of liquid, figure 1(b). The printed liquid
lines are not always unstable however and we also show experimentally stable lines,
figure 1(c).

We have studied the growth rate of a bulge with a simple dynamic model and found
a stability criterion for an ink-jet printed liquid line which shows reasonably good
agreement with theory. With this simple model the distance between the bulges can
also be calculated and was found to be in reasonable agreement with experimental
results.
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Figure 1. Different modes of a printed line on a substrate; (a) the line breaks up into individual
droplets; (b) the line breaks up into liquid bulges connected by a ridge of liquid; (c) stable
printed line.

2. Experimental set-up
The model liquid is a small amount of the conducting polymer, poly(3,4-ethyl-

enedioxythiophene) doped with polystyrene sulphonic acid (PEDOT/PSS, Baytron
P from Bayer, Krefeld, Germany) dissolved in water. This polymer is used in the
fabrication of light-emitting polymer displays and plastic electronics, e.g. Sirringhaus
et al. (2000) and Duineveld et al. (2001). It can be described very well as a suspension
of polymer spheres in the solvent. In this paper we refer to this material by its
common name: Pedot. The surface tension, σ , of Pedot was measured to be close
to that of water: 0.07 Nm−1. The dynamic viscosity, µ, of the liquid used in the
experiments was 20 cP at room temperature.

Drops were generated with a MicroDrop single-nozzle piezo-electric drop-on-
demand ink-jet system with a specified nozzle diameter of 50 µm. The diameter of an
ejected Pedot drop, D, as it leaves the nozzle, was found to be D = 67.4 ± 1.0 µm,
giving a drop volume, Vd of 160 pl. The velocity of the drops as they leave the nozzle
≈ 2 m s−1. The ink-jet head was positioned ≈ 1 mm from the substrate and kept fixed
during experiments. The substrate was moving on a computer controlled x-y trans-
lation stage, with a variable speed of between 1 and 30 mms−1. An encoder signal
from the x-y stage gave a trigger to the droplet-on-demand ink-jet system. In this
way drops could be placed on the substrate with a variable inter-drop distance: �x.
This is the centre-to-centre distance on the substrate between successively landing
drops, i.e. it is the tail-to-tail distance between the drops on the substrate. With our
system both the substrate velocity U and �x can be independently varied. This is
done by changing the droplet frequency. Note that the x-y stage is the master and
the droplet-on-demand ink-jet system the slave.

In the experiments the drops were printed on 6 in. square glass substrates. In order
to vary the wettability of the liquid on substrate we have spin-coated on top of
the glass plate a standard photo-resist layer, a few microns thick which was given
different surface treatments: used as received, put in a UV–ozone oven, or treated by
a CF4 plasma. Both the advancing and receding contact angles of the liquid with the
different substrates were measured. The advancing contact angle, θa , is defined as
the contact angle of an advancing liquid front with the substrate, while the receding
contact angle, θr , is the contact angle of a receding liquid front. These contact angles
were determined by the quasi-static technique of slowly forming a mm sized drop of
liquid through a needle onto the substrate, table 1. For the reader interested in this
field we refer to the reviews by Dussan V. (1979) and Blake (1993). The UV–ozone
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Type Substrate θa θr

I UV–ozone treated (5 minutes) resist 0.42 ± 0.04 0

II ‘Standard’, non-treated resist 1.15 ± 0.04 0

III CF4 treated resist 1.7 ± 0.04 0.56 ± 0.04

Table 1. Contact angles (in rad) of Pedot on the different substrate types.

h

b

rc

θ

Figure 2. Contact angle of a liquid with a solid.

treatment is a standard way to lower the advancing contact angle of the liquid. By
increasing the time of the treatment it was found that θa was decreased to very low
values. With the CF4 treatment a monolayer of a fluorinated moiety is put on the
surface, which increases the advancing contact angle of the liquid with the substrate.
The Pedot did not dewet the UV–ozone treated and standard resist plates, while on the
CF4 treated resist it has a finite receding contact angle. The surface treatment of
the spin-coated resist plates has the advantage that the roughness of the surface
is negligible and is identical for every plate. Note that the substrates used in the
experiments are non-porous, which is different from the graphics industry, but similar
to substrates used in the electronics industry.

When the drops are printed at a large inter-drop distance, �x, they will land on
the substrate as individual drops. As �x decreases the individually printed drops will
merge to a line. The length of an ink-jet printed line was 30 mm in our experiments
and the printed drops were observed with a standard CCD camera.

To describe the experimental results we discuss here the shape of stable lines and
drops on a substrate. Due to the small dimensions in the problem it can be shown
that the influence of gravity is negligible compared to the surface tension, σ . The
standard non-dimensional number to describe this effect is the Bond number, defined
here as Bo = ρgD2/σ , where ρ is the density, g the acceleration due to gravity and
the diameter of the droplet, D, is the typical length scale in the problem. This gives
Bo < 10−3; hence the cross-section of a printed drop or line can be described as a
truncated circle, where the angle θ is the contact angle of the liquid with the substrate,
figure 2. When the liquid is in equilibrium with the solid substrate the contact angle,
θ , is given by

cos θ =
γsv − γsl

σ
, (1)

where γsv and γsl are the substrate–vapour and substrate–liquid energies per area.
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Figure 3. Results of ink-jet printed unstable lines on CF4-treated resist substrates with different
inter-drop distances and a substrate velocity of 5mm s−1: (a) 30 µm inter drop distance (note
the individually printed liquid drops with a diameter of 70 µm); (b) 50 µm inter-drop distance.

To describe a line a dimensionless width b∗ = b/
√

S is defined, where S is the area
of the cross-section. We have

b∗ =
2 sin θ√

θ − sin θ cos θ
. (2)

With the standard relations for a truncated circle the functional behaviour for the
height h and the radius of curvature rc as a function of θ can be found.

The area of the liquid cross-section, S, of a stable printed liquid line is given by

S =
Vd

�x
, (3)

where Vd is the volume of an individually printed drop, here 160 pl.
For a single printed drop the shape can be derived in a similar way. Here we

define the dimensionless width of the drop b∗
0 = b0/D, where b0 is the width of a

cross-section of the drop on the substrate. The relation for b∗
0 is

b∗
0 =

(
4 sin3 θ

(1 − cos θ)2(2 + cos θ)

)1/3

. (4)

When the width of a printed drop on the substrate is measured and the volume of
the drop is known, the contact angle of the liquid with the substrate can be calculated.

3. Experimental results of ink-jet printed lines on a substrate with finite
receding contact angle

Here, the experiments performed on type III substrates, i.e. treated with CF4 are
described. Typical examples are shown in figure 3. In all figures showing experimental
results in this paper a top view of the dried polymer pattern is shown. Both
figures 3(a) and 3(b) were printed with a substrate speed of 5mm s−1. In figure 3(a)
we have also printed at the right-hand side individual drops, with a diameter on the
substrate of 70 ± 3 µm. With this diameter and the size of an individual drop we find
with (4) that the contact angle is very close to the advancing contact angle of the
liquid on the substrate.
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Figure 4. Wavelength of the instability for finite θr , as a function of �x. The theoretical
formula (5) of Schiaffino & Sonin (1987) is compared with the experiments.

The drops printed at an inter-drop distance smaller than the individual drop
diameter do not merge to a stable line but instead the line breaks up into individual
drops, i.e. the liquid dewets the substrate. Therefore every dot on the substrate contains
the volume of many ink-jet printed droplets, e.g. for figure 3(a) about 10 droplets. The
wavelength between these drops, λ, increases with decreasing �x. This was found to
occur for all printed drops, at all possible substrate velocities. Note that the droplets
are not spherical, probably due to the difference in θa and θr .

This instability was observed by Schiaffino & Sonin (1997), for water printed on
a Plexiglas substrate. The important aspect of this instability is that the liquid must
have a finite receding contact angle, preferably close to the advancing contact angle.
This is easier to achieve with a pure liquid than with a suspension. With e.g. a CF4

plasma, however, this can be obtained for a suspension as well.
The instability can be described theoretically with a boundary condition of a

constant contact angle, as was reported by Davis (1980) and Schiaffino & Sonin
(1997). The line is unstable for all contact angles θ . The wavelength of the instability
is a function of θ . To compare our experimental results with the one-dimensional
stability theory of Schiaffino & Sonin (1997), we use a constant contact angle of
≈ π/2, see table 1. The theoretical results then give h/λ ≈ 0.15, with h the height
of the stable liquid line. With (3) and (2) and the standard relation for a truncated
circle we can easily find that the theoretical relation for the wavelength of the drops
becomes

λ ≈ 1

0.15

√
2Vd

π�x
. (5)

The wavelength scales with the inverse square root of the inter-drop distance, which
was found to hold reasonably in the experiments. Further, figure 4 shows that the
absolute wavelength is also in reasonably good agreement with the theory.

4. Experiments with a zero receding contact angle boundary condition
These experiments were performed with the standard substrates and the UV–ozone

cleaned substrates. For both substrates θr = 0; the only difference is in θa , which is
much lower for the UV–ozone treated substrates (see table 1).
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Drop distance=20 µm Drop distance=10 µm

Figure 5. Ink-jet printed ‘stable’ lines on a type I substrate, with different �x and substrate
velocity of 5mm s−1. In the middle of the figure single drops with a diameter of 165 µm on the
substrate are shown.

4.1. Experiments with UV–ozone treated substrates

On the UV–ozone treated substrate almost all printed lines were stable, i.e. the drops
merged together to a perfectly straight line, figure 5. In the middle of this figure
the individually printed drops can be observed, with a diameter of 165 ± 3 µm on the
substrate. At the side of the figure the drops were printed at an inter-drop distance,
�x of 10 and 20 µm, respectively.

Let us first discuss the printing of a single drop on a substrate. After hitting the
substrate it takes some time before the drop reaches equilibrium. This is mainly due to
shape oscillations of the drop as was also observed by Attinger, Zhao & Poulikakos
(2000) for an ink-jet printed hot metal drop on a substrate. A typical time scale, T0,
is the n = 2 mode surface oscillation of a drop, as given by Lamb (1932):

T0 =
1

2π

√
8ρA3

σ
, (6)

which gives for our problem T0 ≈ 1 × 10−5 s, too fast to be observed with our CCD
camera.

When a ‘stable’ liquid line is printed there are more time scales involved. First,
there is that of a single drop landing in the line, which is similar to (6). After this very
short time when the oscillations are damped out the line will spread from an initial
width to a final width. For simplicity we assume that the initial width at the start
of this process is equal to the width of a single drop. Because the area of the cross-
section is known from (3) we can calculate with (2) the contact angle θ1 of the liquid
with the substrate at the start of spreading. At sufficiently small �x the contact angle
θ1 will be larger than θa . Then the capillary forces will cause the line to spread until
the equilibrium contact angle θa is obtained, figure 6. With (2) and θa the width of
all stable lines can be calculated and were found to be in perfect agreement with the
experimentally determined line width. The width of the 10 µm inter-drop distance line
was found to be exactly

√
2 larger than the lines with inter-drop distance of 20 µm,

as follows also from (2) and (3).
The time scale for capillary spreading of a line is much larger than T0. It is a

complicated problem, due to the moving liquid front. Here we will use the molecular
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Figure 6. Cross-section of the spreading of a ‘stable’ line due to capillary forces. A line with
an initial contact angle θ1 and width b0 (equal to the width of a single ink-jet printed drop)
spreads to the equilibrium width given by θa .
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Figure 7. End effects on a type I substrate of a ‘stable’ printed ink-jet line. Substrate velocity
5 mm s−1, �x = 50 µm. The diameter of the single drops is 165 µm.

displacement approach by Blake (1993). The relation between the velocity of a moving
liquid front, v, and the dynamic contact angle, θ(t), is given by his equation (22),
which is

v =
K1

µ
sinh

σ (cos θa − cos θ(t))

K2

, (7)

where K1 and K2 contain several constants which are explained in the paper by Blake.
In our experiments it is appropriate to linearize this equation to

v =
K1σ

K2µ
(cos θa − cos θ(t)), (8)

which is equation (23) in Blake’s paper. Figure 17 in Blake is a masterplot of µv

versus σ (cos θa − cos θ(t)). From this plot we find for σ (cos θa − cos θ(t)) = 0.015 a
typical moving contact line velocity of 5 × 10−4 m s−1. This gives a time for spreading
of the line due to capillarity of O(0.1) s, which is in reasonable agreement with the
spreading time observed on our video system and is much larger than the equilibrium
time of a single drop.

There is also a hydrodynamic theory for the velocity of the moving contact line
based on the viscous dissipation near the three-phase line, as is discussed by e.g.
de Gennes (1985). This theory, however, is only valid in the limit of small contact
angles.

In figure 7 the starting and stopping of printed stable lines is shown. In all
experiments the lines are printed in two directions, i.e. at the end of a printed line
the ink-jet head stops printing, the stage is moved in the y-direction and the head
starts printing again, while the stage is moving in the opposite x-direction. The lines
are clearly somewhat more widened at the start, probably because in this phase the
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Print direction

Figure 8. Instability of a printed liquid line on a type I substrate. Velocity of the substrate
2 mm s−1 and inter-drop distance �x = 50 µm. The individually printed drops have a diameter
of 165 µm. The left-hand figure shows the end effects of the printed line.

pattern changes from one with a truncated spherical symmetry (drop) to a truncated
cylinder symmetry (line).

On a type I substrate, i.e. a UV–ozone treated plate, a printed liquid line is not
always stable, figure 8. Below a critical substrate velocity, Uc, the printed line was
found to be unstable, similarly to figure 1(b), by forming bulges connected, by a ridge
of liquid. Note that the only difference between figure 7 and figure 8 is the substrate
velocity U . In figure 8 the width of the ridge connecting the bulges is of similar size to
the width of an individually printed drop. The instability was observed for different
�x. For the UV–ozone treated substrates Uc ≈ 3 mm s−1 for �x = 50 µm.

We are interested in the contact angle θ1 of the line before it starts to spread due
to capillarity, when it is assumed to be equal to the width of a single drop, figure 6.
With �x = 50 µm and a width b0 = 165 µm we find with (2) and (3) that θ1 = 0.66.
This value is larger than θa but much smaller than π/2.

Apparently, an ink-jet printed liquid line on a type I substrate can become unstable
when the contact angle of the line with the substrate is much smaller than π/2. When
the substrate velocity is above a critical velocity the line is stable and the final width
of the line is in good agreement with the theoretical relation (2) with θ = θa .

4.2. Experiments with ‘standard’ substrates

Now we move to the experiments on type II substrates, the standard untreated resist.
We have observed that printed liquid lines can become unstable. The instability is of
a completely different kind than the one with finite θr . In figure 9 we show results
for printed liquid lines, all at the same substrate velocity of 2.5 mm s−1, for different
�x. When �x exceeds a critical value we found that the lines can become unstable,
i.e. a liquid bulge is formed connected by a ridge of liquid, similar to figure 1(b). At
low �x only one single bulge at the start of the line was formed, figure 9(a). When
�x is reduced the wavelength between the bulges rapidly decreases. Note that this
instability is similar to the one observed in figure 8, i.e. bulges connected by a ridge
of liquid.

We observed that the change from stable to unstable lines occurs at �x ≈ 60 µm.
At this inter-drop distance the width of the line is still equal to the width of a single
drop. For all our experiments on type II substrates b0 = 108 ± 3 µm. With (2) and
(3) the angle θ1 of the line with the substrate, as shown in figure 6, can be calculated,
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Figure 9. Instability of an ink-jet printed liquid line on a type II substrate with θr = 0 and
θa = 1.15 for different �x, all with a substrate velocity of 2.5mm s−1. (a) �x = 50 µm; (b)
�x = 30 µm; (c) �x = 10 µm. In (a) and (b) starting and stopping of the printed lines is
shown. In (c) two parameters to describe a bulge, R and α, together with the wavelength λ are
given.

which gives θ1 ≈ 1.13. The maximum error in θ1 is 0.08 rad, which is found from a
Taylor expansion of the functional relations (2) and (3). This value for θ1 is, within
the experimental uncertainty, equal to the advancing contact angle θa . Apparently a
line can become unstable when θ1 > θa .

When the printed line is unstable the width of the connecting liquid ridge between
the bulges on the type II substrates was found to be exactly equal to the diameter of
an individually printed drop on the substrate, b0. The cause of the existence of the
connecting liquid ridge is θr = 0, i.e. the liquid does not dewet the substrate. Hence
the width of the ridge can never become smaller than the width of a single ink-jet
printed drop.

At the start of every unstable line we always observed a bulge. At this position there
is a change from spherical to cylindrical symmetry. Apparently this is the ‘seed’ for
the instability and a bulge starts to grow. The bulge consumes liquid from the printed
ridge. This causes the angle of the liquid in the ridge to be lower than θa , i.e. the line
cannot spread. The liquid can only be pumped through the ridge to the bulge by a
pressure difference, which is generated here by surface tension. At the position where
the printed droplets merge with the line there is extra curvature which generates an
increase in pressure. This extra pressure pumps liquid to the bulge, figure 10. Because
the liquid is pumped from the front of the line to the rear there is always a connecting
ridge at the end of the printed liquid line.

After a particular length of the line is exceeded a new liquid bulge will grow. With
increasing length of the ridge the flow rate through the ridge is decreasing. At some
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Pf Pb

Figure 10. Schematic drawing of the start of the growth of a liquid bulge at the rear of a
printed line. The pressure at the front of the line, Pf , is larger than in the bulge Pb , because
of the extra curvature.

(a)

(b) (c)

Figure 11. The instability of a printed liquid line for different substrate velocities, all with
an inter-drop distance of 30 µm: (a) substrate velocity 5mm s−1; (b) 10mms−1; (c) 20mms−1.
Note that at higher substrate velocities the size of the bulges is not completely regular. The
width of the connecting ridge is 108 µm in all pictures.

point in time the contact angle of the liquid in the ridge becomes larger than the
advancing contact angle. We will show that then it is favourable for a new liquid
bulge to grow. It was noticed that a new bulge starts to grow at a finite distance from
the front of the line where the drops are landing. This distance is very small, however,
of order 300 µm, i.e. only a few times the width of the ridge. It is referred to as lm,
the minimum length of the ridge. Although the accuracy of these measurements is
not very good we found that lm decreases slightly with decreasing �x and seems to
be nearly independent of the substrate velocity.

When the substrate velocity, U , is increased at constant �x the distance between
the bulges decreases (figure 11). Due to volume conservation the bulge now becomes
smaller. This was observed to hold for all cases studied with �x < 60 µm.

All experimental pictures show a top view of the bulges. In the plane of the
substrate the contour of a bulge can be described as a truncated circle with radius
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R which intersects the ridge at an angle α, as is shown in figure 9. The final value
of R and α is not constant but depends on �x (figure 9) and U (figure 11). Typical
values are R ≈ 300 µm and α ≈ 0.8 rad. In all the experiments we found that the
radius R is equal to the maximum width of the bulge.

The instability on the type I and II substrates, i.e. with θr = 0, is different from the
instabilities in which either the contact angle or the width is constant. The experiments
on the type III substrate can be reasonably well described with a constant contact
angle. With this boundary condition the wavelength between the drops increases with
decreasing �x, as is shown in figure 4. On the substrates with θr = 0, however, the
distance between the bulges decreases with decreasing �x. Further, the distance was
also found to depend on the substrate velocity. With a constant-width boundary
condition a liquid line becomes unstable when θ > π/2, as observed by Schiaffino &
Sonin (1997). Our experiments on the type I and II substrates also do not match with
this boundary condition.

The results show some resemblance with recent experiments by Gau et al. (1999) and
a discussion of these experiments by Lipowsky (2001) on the stability of liquid lines
on a non-homogeneous substrate. These substrates were patterned with micro-contact
printing to form hydrophilic stripes on a hydrophobic substrate, where θa = 1.88 on
the hydrophobic region. By condensation a water ridge was formed on the hydrophilic
stripes. Above a contact angle of π/2 the liquid stripe was unstable and one single
bulge was formed that also wetted the hydrophobic area of the plate. The shape of
the bulge in these experiments is similar to the bulges in our experiments. With a
numerical calculation based on minimizing the free-surface energy Gau et al. (1999)
found a good agreement between the experimentally observed and calculated shape
of the bulge. The main difference with our experiments is that in these experiments
a line is formed by homogenuous condensation, while in our experiments there is a
moving liquid front.

We will now summarize the main points of the experiments on the type I and II
substrates, i.e. with θr = 0. First it was observed that a line may become unstable
when θ1 > θa . The instability is completely different from the instability with known
boundary conditions. The condition θ1 > θa , however, is not a sufficient condition for
instability, as was observed on the type I substrates. Apparently, for this substrate
type the velocity of the substrate must be lower than a critical value. In the next
section a simple model is developed to describe the observed phenomena.

5. Dynamical model for instability of a line with zero receding contact angle
A classical approach for stability problems is to perform a linear stability analyis

of the unperturbed problem, e.g. Davis (1980) and Schiaffino & Sonin (1997). Due
to the non-symmetric boundary condition of our problem, where the contact line can
only advance and not recede, this approach is not suitable. Therefore another, simple,
approach has been used. First we derive a condition for stability of a line with zero
receding contact angle. With a simple model the dynamics of the bulge formation is
studied. Finally we discuss the stability of a line on a type I substrate.

In our model we assume for simplicity that the viscosity remains constant. This
assumption is reasonable when the typical time of the experiment is much smaller than
the typical time for evaporation. Further, the influence of surface tension gradients is
neglected, i.e. a constant surface tension is assumed. We can use a simple argument
to support this assumption. During printing of a line the polymer concentration
at the front of the line, where the drops land, will be slightly lower than further
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Figure 12. Top view of a stable line with a constant cross-section with contact angle θ1, and
a line with a small disturbance (bulge). The contact angle of the liquid in the disturbance is
equal to θa .

down the line, due to evaporation. As the surface tension decreases with increasing
concentration, this will give a somewhat larger surface tension at the front of the line,
resulting in a flow directed to the front of the line. This is in the opposite direction to
that observed in the experiment. Therefore it seems reasonable to neglect the influence
of a surface tension gradient.

Before starting the modelling we should briefly describe the different contact angles
that are used. These are θa and θr , the advancing and receding contact angle which
follow from the quasi-static measurements as described in table 1. Further, there is θ1,
which is the contact angle of a stable line with width b0, as given in figure 12. When
a line is unstable θ2 is the contact angle in the ridge connecting the bulges.

5.1. Static condition of stability for a liquid line with zero receding contact angle

It is our intention to derive a condition for stability for a line of liquid with zero
receding contact angle. Therefore we start with a stable line with a width equal to
the width of a single printed drop, b0, i.e. a line where there is no disturbance of the
impacting drop and the line has not yet spread due to capillarity. This line has constant
cross-section with angle θ1, which can be experimentally varied by changing �x. The
line will be unstable when the pressure in a small disturbance (bulge) is smaller than
the pressure in the line. The condition θr = 0 indicates that a disturbance can only
increase the line width as is shown in figure 12. Further, we assume for simplicity
that the liquid in a disturbance spreads with the advancing contact angle, as given
in table 1, i.e. we assume a quasi-static situation. This assumption will be discussed
later.

Based on our experiments we model the shape of the bulge in a very simple,
geometric way. In the plane of the substrate the contour of the bulge can be described
as a truncated circle with radius R which intersects the ridge at angle α, figure 12.
The contour b(x) of a bulge on the substrate is then given by

b(x) = b0 + 2(
√

R2 − x2 − R cos α), −x0 � x � x0, (9)

x0 = R sin α, (10)
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Figure 13. Cross-section of the bulge at position b(x) with radius of curvature r(x).

where x0 is half the width of the bulge, as drawn in figure 12. Due to the small
dimensions we assume that the cross-section at each position on the bulge b(x) can
be described as a truncated circle, figure 13. The contact angle of a cross-section is
not constant but changes from θa at (0, 0) to θ2 at the point where the bulge meets the
ridge. Here θ2 is the contact angle of the ridge. To further simplify the mathematics
we assume that the contact angle for each cross-section B–B is equal to θa , figure 12
and figure 13, as the differences between θa and θ2 will be small. Our simple model
with (9) is continuous in the plane of the substrate. There is, due to the difference
between θ2 and θa , a discontinuity of the height h of the line at the contact point
between the liquid ridge and the bulge. Because this ‘matching’ zone is only very
small, of order 5–10 µm, the difference between the exact solution and our model will
be small, as follows also from figure 9(c).

The volume of the bulge, Vb, is a function of b0, θa , R and α. It can be found by
integrating the area of a cross-section (2), where the width of a cross-section of the
bulge is given by (9); this results in

Vb(R, α) =
θa − sin θa cos θa

4 sin2 θa

(
2b2

0R sin α + 4b0R
2(α − sin α cos α)

+ 8R3
(
sin α − α cos α − 1

3
sin3 α

))
. (11)

The total volume of a stable liquid line, Vt , with length L and contact angle θ1 can
be found from (2) or (3):

Vt =
b2

0(θ1 − sin θ1 cos θ1)

4 sin2 θ1

L =
Vd

�x
L. (12)

The pressure in a liquid line, Pl , with width b0 and angle θ1 is

Pl =
2σ sin θ1

b0

. (13)

The pressure in the bulge is calculated for the static case, i.e. we assume that the
contribution due to flow in the bulge is negligible. We first specify the surface of the
bulge by the function z(x, y):

z(x, y) =
√

r2(x) − y2 − r(x) cos θa, (14)

where r(x) is the radius of curvature of a cross-section of the bulge (figure 13), which
can be written as

r(x) =
b(x)

2 sin θa

. (15)



The stability of ink-jet printed lines 189

In the static situation the pressure at a point on the bulge is given by

P (x, y) = σ (1/R1 + 1/R2), (16)

where R1 and R2 are the main radii of curvature at a point (x, y) on the surface. From
analytical geometry it is known, e.g. Aris (1962), that the divergence of the normal
vector at point (x, y) is equal to the sum of the radii of curvature, ∇ · n = 1/R1 +1/R2.
Hence the pressure in the bulge is different at every point on the bulge, which is
physically not correct but caused by the simple geometric shape we assume. Therefore
we define an average pressure in the bulge as

Pb =
1

Ab

∫
A

P (x, y) dA, (17)

where Ab is the area of the bulge in contact with air. This gives

Pb =
4σ

Ab

∫ x0

0

∫ b(x)/2

0

(∇ · n)

√
1 +

(
dz

dx

)2

+

(
dz

dy

)2

dx dy. (18)

The calculation can be simplified by applying a coordinate transformation from
(x, y) → (x, φ), figure 13. This gives

Pb =
4σ

Ab

∫ x0

0

∫ θa

0

1 +
r ′2(x) sin2 φ cos2 θa − r(x)r ′′(x)(1 − cos θa cos φ)

1 + r ′2(x)(1 − cos θa cos φ)2
dx dφ, (19)

where r ′(x) is the derivative of r(x) with respect to x.
The surface area of the bulge in contact with air, Ab, is given by

Ab(R, α) = 4

∫ x0

0

∫ b(x)/2

0

√
1 +

(
dz

dx

)2

+

(
dz

dy

)2

dx dy. (20)

With the coordinate transformation (x, y) → (x, φ) it can be shown that the area Ab

can be expressed in these new variables as

Ab = 4

∫ x0

0

r(x)

∫ θa

0

√
1 + r ′2(x)(1 + cos θa cos φ)2 dx dφ. (21)

Substituting (15) and (9) in (21) this integral can be calculated numerically with the
software routine Mathematica (Wolfram Research Inc.) and (19) was also calculated
numerically with this.

In this static consideration we allow, for generality, every (R, α) combination.
First the situation where θa < π/2 is discussed. Let us assume θ1 = θa . Then a small
disturbance will consume some of the adjacent liquid in the ridge. We overestimate the
pressure in the ridge by assuming that the contact angle remains θ1. This is acceptable
in the limit of a small disturbance volume, i.e. α → 0. We find that the pressure in the
bulge is smallest at the position (x, y) = (0, 0), using a simple analytical expression:

Pb(0, 0) = 2σ

(
sin θa

b0 + 2R(1 − cos α)
+

(1 − cos θa)

R sin θa

)
. (22)

In the limit α → 0 the pressure in the bulge is always larger than the pressure in the
line, Pl; hence this is a stable situation. Note that for θ1 = θa expression (22) is equal
to the result obtained when the contact angle of a cross-section is not constant.

In the situation θ1 < θa we can use a similar argument to show that the line is
stable. The minimum pressure in the bulge given by (22) is always larger than Pl ,
given by (13); hence the line is stable.
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R (m) α �P (Pa)

0.000150 0.323 −88.1

0.000175 0.299 −44.8

0.000200 0.279 −12.3

0.000225 0.263 +13.0

0.000250 0.250 +33.2

Table 2. Calculation of the pressure difference between the bulge and the ridge for different
(R, α) combinations. The calculations were performed for θ1 = 1.3, θa = 1.15 and b0 = 108 µm.

When θ1 > θa the argument used in the previous two cases does not hold. In this
situation a disturbance does not have to be small because of volume conservation.
The contact angle in the bulge, θa , is smaller than the contact angle θ1 of the line;
therefore it can be shown with (11) and (12) that the volume of a bulge under the
constraint α → 0 is smaller than the volume of a stable line with equal length. To
fullfil volume conservation α must be finite for each R. For every combination of α

and R we can calculate the volume of the bulge and compare it with a ridge of equal
length. This gives us for each R one specific α where there is volume conservation.
The pressure in the bulge can be calculated for each (R, α) combination that satisfies
volume conservation. Essentially it is the radius of the contour of the bulge on the
substrate R that is the dominant factor. When θ1 > θa we can always find a value of
R that is sufficiently large for the pressure in the bulge to be smaller than the pressure
in the ridge. Hence the situation when θ1 > θa is unstable, i.e. a small disturbance in
line width can grow, which is in agreement with the experiments.

In table 2, we have calculated for a specific case, θ1 = 1.3, different combinations of
(R, α) where volume conservation holds. The pressure difference �P = Pl −Pb(0, 0) is
negative for small R, i.e. stable, and for a certain critical R it becomes positive, hence
unstable. These calculations give for every θ1 > θa a critical R where the line becomes
unstable. Note that although the initial disturbance is, due to volume conservation,
finite the absolute value of the disturbance is still small. Further, if we use the average
pressure in the bulge, a slightly larger critical value of R is obtained.

In this simple analysis we have neglected the spreading of the complete line due
to capillarity. When θ1 > θa the line will also spread until θa is obtained, as was
observed in the experiments shown in figure 5. Here we assume that the time scale
for spreading is much slower than the time scale for bulge formation. This will be
discussed in the next sections.

When θa > π/2 the situation is changed somewhat. Then, until θ1 = π/2 the situation
is stable, similarly to the boundary condition for a ridge with a fixed width, as discussed
by Davis (1980) and Schiaffino & Sonin (1997). They show that when θ1 > π/2 this
system becomes unstable. This is the boundary condition studied by Gau et al.
(1999), who also found that a line becomes unstable when θ1 > π/2. In their system
only a single bulge was observed because the line was applied instantaneously by
condensation.

5.2. Growth rate of a liquid bulge

We consider an instable situation, θ1 > θa and θa < π/2, and are interested in the
growth rate of the liquid bulge. In principle, as we discussed in the previous section,
the disturbance can grow when the pressure in the ridge is larger than the pressure
in the bulge, i.e. when θ1 > θa . In the analysis of the previous section we had not yet
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Figure 14. Top view of the instability, with the formation of a new bulge at the start of the
line. This new bulge is assumed to start at a distance lm from the front of the line where the
drops land.

incorporated the moving liquid front, which is generated by the ink-jet printed drops
on the surface.

The moving liquid front introduces an end effect in the printed line. When a line is
started, the first droplets that are printed can spread a little further than the width of
a single drop because there is initially a spherical symmetry, i.e. here the initial bulge
starts that grows with time. In figure 14 we sketch the situation at the start of a new
bulge in the line. As discussed, this bulge starts to grow at a small distance lm from
the front of the line where the printed drops are landing. At this front there is an
extra curvature which generates a larger pressure Pf that can pump liquid through
the ridge to the bulge. Due to the growth of the bulge the average pressure Pb

in the bulge is decreasing. We assume that the pressure difference, �P = Pf − Pb,
is the driving pressure for the flow of liquid through the ridge, figure 10. With this
simple assumption the growth of a bulge can be analysed; we are not restricted to
small perturbations, as is the case in the linear stability analysis used by Davis (1980)
and Schiaffino & Sonin (1997). In the calculations the width of the connecting liquid
ridge remains constant, b0. The contact angle in the bulge is assumed to be equal to
θa , the advancing contact angle, and the contact angle in the connecting ridge is given
by θ2, which is assumed for simplicity to be constant in the ridge.

In our model it is important to describe the bulge with only one single dynamic
variable. Here we use the radius of the contour of the bulge on the substrate, R. From
our experimental results it was found that R was always equal to the maximum width
of the bulge, i.e. b(0). With (9) it can be shown that then there is a direct relation
between α and R:

α = arccos

[
R + b0

2R

]
. (23)

For simplicity we assume that this relation holds during the growth of the bulge. Note
that this means that we start with an infinitesimally small disturbance when R = b0

because then α and x0 are zero, as follows from (23) and (10).
It is assumed that the flow through the liquid ridge to the bulge is fully developed

and viscous forces are dominant over inertia forces. These assumptions will be verified.
The transported flow rate, Q, of liquid through the ridge can be written in a general
form (Berger 1963) as

Q =
s�PS2

µlr
, (24)
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Figure 15. Shape factor s as a function of the contact angle θ2.

where s is a shape factor depending on the shape of the cross-section, lr is the length
of the connecting liquid ridge, S is the area of the cross-section and µ is the liquid
viscosity. This formula is valid for a cross-section where the no-slip condition holds
on its entire boundary. In our case there is a zero shear stress condition on the
free surface. We calculate the flow rate in this case with a simple one-dimensional
approximation. Then the problem to solve is

d2u

dz2
=

−1

µ

dP

dx
, (25)

where u is the axial velocity in the ridge. The complete no-slip boundary condition is
z = 0, u = 0 and z = h, u = 0. For the free surface the boundary condition is z = 0,
u = 0 and z = h, du/dz = 0. Calculation shows that the flow rate Q through the
cross-section is a factor 4 larger with the free surface boundary condition; hence we
have

Q =
4s�PS2

µlr
. (26)

This equation describes the flow of liquid through the ridge to the bulge.
The shape factor of the fully developed, stationary flow through a cross-section

of a truncated circle, with angle θ2 has been calculated numerically by Sparrow &
Haji-Sheikh (1966). It can be shown that the shape factor s can be written as

s =
32S

cf p2Re
, (27)

where cf is the friction factor, Re the Reynolds number and p the perimeter
of the cross-section. For every angle θ2 the product cf Re ≈ 64. Basically, the ratio of
the perimeter and the surface the cross-section determines the shape value s. With
use of (2) we find

s =
θ2 − sin θ2 cos θ2

8(sin θ2 + θ2)2
. (28)

The shape factor s is plotted as a function of θ2 in figure 15. Especially for small θ2,
the resistance to flow increases drastically.

One of the referees brought several papers to my attention where the problem of
a steady, pressure-driven, rectilinear flow along a ridge whose free surface is an arc of a
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circle is studied analytically. Allen & Biggin (1974) solved a thin-film approximation
of the problem and it was verified that for all θ their solution is only 1% different
from the present one, which is essentially also a thin-film approximation. Mikielewicz
& Moszynski (1978) solved the exact problem with a conformal transformation. We
have compared the flow rate of their exact solution, which was numerically calculated
with Mathematica to our approximation and found that the differences are still
reasonably small. For θ = 1.15 the exact solution gives a 15% larger flow rate which
is rapidly decreasing for smaller values of θ . Therefore our simple approximation
seems appropriate.

The growth of the volume of the bulge with time, Vb, is caused by the flow of liquid,
Q, through the ridge

Vb(R(t)) =

∫ t

0

Q(t̃) dt̃ . (29)

Differentiation with respect to t then gives an ordinary differential equation for the
growth rate of the bulge:

dR

dt
= Q(t)(∂Vb/∂R)−1. (30)

We now consider the different terms of this equation.
The expression for ∂Vb/∂R with the constraint (23) is

∂Vb

∂R
=

θa − sin θa cos θa

4 sin2 θa

(
2b2

0 sin α + 8b0R(α − sin α cos α)

+ 24R2(sin α − α cos α − 1/3 sin3 α)

+ (2b2
0R cos α + 4b0R

2(2 sin2 α) + 8R3(α sin α − sin2 α cos α))
dα

dR

)




(31)

dα

dR
=

b0

R2
√

3 − b2
0/R

2 − 2b0/R
.

The total volume of the line, Vt , is given by (12) where L is the total length of the
line and θ1 is the contact angle of a stable line. The volume in the liquid ridge, Vlr , is
with the assumption of constant θ2, calculated in a similar way:

Vlr =
b2

0(θ2 − sin θ2 cos θ2)lr

4 sin2 θ2

, (32)

where lr is the length of the liquid ridge. The angle θ2 in the ridge can be solved from
volume conservation, Vt = Vb + Vlr . The length lr is a function of time according to

lr = lm + Ut − x0, (33)

where lm is the minimum length of the ridge, as sketched in figure 14, U the substrate
velocity and x0 half of the size of the bulge. The total length of the line L necessary
to calculate Vt is given by L = Ut + lm.

An expression for the average pressure in the bulge was derived in the previous
section. With the constraint (23) the pressure in the bulge is a function of only R,
for given b0 and θa . We have calculated the average pressure in the bulge for our
experimental situation with b0 = 108 µm and θa = 1.15 numerically, figure 16. The
pressure can be very well approximated by a simple analytical function:

Pb =
1

a0 + a1R(t)
, (34)
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Figure 16. Average pressure in the bulge as a function of R for b0 = 108 µm and θa = 1.15.
The full line is the numerical solution and the dashed line the simple fit (34) with a0 = 1.383 ×
10−4 Pa−1 and a1 = 4.287 (Pa m)−1.

where a0 and a1 are constants, depending only on the advancing contact angle θa and
b0. The fit in figure 16 was made with a0 = 1.383×10−4 Pa−1 and a1 = 4.287 (Pa m)−1.
It was found that for every reasonable b0 and θa value the pressure in the bulge can
be described by (34). Therefore we have used the approximation (34) in our numerical
calculation for the growth rate of the bulge to calculate the pressure in the bulge.

At the front of the printed liquid line the ink-jet printed drops merge with the line.
The pressure at the front, Pf , is simplified to

Pf =
2σ sin θa

b0

+
2σ sin θ2

b0

, (35)

where the first term in the right-hand side is the contribution of the individually
printed drop and the second is the pressure in the ridge. We could also have taken
4σ sin θa/b0 as Pf , i.e. twice the pressure in the ridge, which was found to modify our
results only slightly.

The differential equation (30) for the growth rate of R was solved numerically,
combined with the volume conservation constrained to calculate θ2. The terms in
the transported flow rate Q are all a function of R, θ2 and the constants in the
experiments. These constants are b0 and θa , which are for a given surface treatment
and drop size fixed; and the constants that can be varied are the substrate velocity
U and contact angle θ1. With (2) and (3) the contact angle θ1 can, for given drop
separation �x, be calculated.

The initial conditions for (30) were R(0) = b0 and θ2 = θ1. Although not exactly
correct for the first bulge, it is a reasonable approximation and can also be used for
the growth rate of any other bulges formed in the line.

In figure 17 we give the growth rate of the bulge for �x = 50 µm (θ1 = 1.282),
b0 = 108 µm and θa = 1.15 for different substrate velocities. We have used for
the minimum length, lm, the experimental value of ≈ 400 µm. As can be observed, the
initial growth rate of a bulge is quite fast and it is possible to pump a sufficient
amount of liquid through the ridge to the bulge in a very short time.

Note that this simple model is an underestimation of the growth rate of the bulge.
When the bulge is growing, the pressure in the ridge may also be larger than the
pressure in the bulge; this gives an extra pressure gradient that can pump liquid to
the bulge. When the length of the connecting liquid ridge is small this contribution
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Figure 17. Growth of the radius R of the bulge as a function of time for �x = 50 µm
(θ1 = 1.282) for different substrate velocities. —, U = 0.0025 m s−1; – – –, U = 0.01 m s−1;
· · ·, U = 0.05 m s−1.

is negligible; with increasing length of the ridge, i.e. increasing time, it will not be
negligible.

We have assumed that the flow is fully developed and viscous forces are dominant
over inertia forces. The average velocity, ū, in the ridge can be calculated with (26),
where we use for simplicity �P ≈ 2σ sin θa/b0. The Reynolds number of the flow in
the ridge is defined as Re = ρūDe/µ, where De is given by 4S/p, with p the perimeter.
When the length of the ridge is small, e.g. equal to the minimum length lm, we find for
lm = 400 µm, with S = 3 × 10−9 m2 and s ≈ 0.02, a value Re ≈ 8 × 10−2. Hence even
at the start of flow, i.e. with a small length of the ridge, it is reasonable to neglect the
inertia terms.

Another assumption is that the contact angle of the liquid in the bulge is equal
to θa , i.e. a quasi-static situation. This assumption is reasonable when the velocity of
the moving contact line of the bulge is sufficiently small. In our model it is assumed
that R = b(0), hence a reasonable estimate of the velocity of the moving contact line
in the bulge is 0.5dR/dt . This was calculated for the parameters of figure 17, which
gives a typical maximum velocity of the moving contact line of 3 × 10−3 m s−1. With
the data of figure 17 of the paper by Blake (1993) we find that this gives a small
increase in θ to ≈1.35 rad. Note from figure 17 that this maximum velocity is only
valid at the start of the bulge formation. Therefore our assumption of a quasi-static
situation is quite reasonable.

5.3. Start of a new bulge

As we have observed in the experiments, several bulges at a very regular wavelength
can be formed in a printed line. Now the distance between the bulges will be calculated
with our model.

In the ridge there are always very small disturbances. When the pressure in a
disturbance is larger than the pressure in the ridge this disturbance cannot grow;
the disturbance is damped out immediately. Only when the pressure in a disturbance
is smaller than the pressure in the ridge do we assume that a new bulge can
spontaneously grow, which was shown to occur when the angle θ2 in the ridge is
larger than θa . Therefore we need to plot the contact angle θ2 in the ridge for different
experimental conditions. In figure 18 the angle θ2 is plotted for similar experimental
conditions as in figure 17, i.e. b0 = 108 µm, �x = 50 µm (θ1 = 1.282) and θa = 1.15 for
different substrate velocities.
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Figure 18. Contact angle of the liquid in the ridge, θ2, as a function of time for b0 = 108 µm,
�x = 50 µm (θ1 = 1.282 rad) and θa = 1.15 for different substrate velocities., U = 0.01 m s−1;
– – –, U = 0.02 m s−1; · · ·, U = 0.03 m s−1. When the curves cross the thick horizontal line at
1.15, a new bulge can start.

Our model predicts that the contact angle in the ridge, θ2, rapidly decreases from
its initial value θ1 to a value below θa . Spreading of the connecting ridge can only
occur when θ2 > θa , i.e. only for the first ≈ 4 ms. An approximation for the velocity
of a moving liquid line as a function of the difference in contact angle is given by
(8). For θ1 = 1.282 rad the constant K1/K2 is found from figure 17 in Blake (1993) to
be K1/K2 ≈ 7 × 10−4 m s−1. The spreading of the ridge was calculated by numerical
integration of (8) over the time θ2 > θa and found to be very small, i.e. less than 1 µm.
Hence the spreading of the ridge is negligible. This means that the liquid is pumped
too fast to the bulge to allow any time for spreading. The liquid also cannot dewet
and therefore the width of the ridge remains constant, equal to the width of a single
drop.

With increasing time, i.e. a growing length of the ridge, θ2 is increasing again
because the pressure difference for pumping the liquid to the bulge is decreasing.
When θ2 becomes larger than θa a new bulge can start. For a small substrate velocity
this takes a long time, more than 2 s. At this time scale evaporation of the solvent will
not be negligible and the constant viscosity assumption is probably not valid. This
will result in only one single bulge at the start of the line, similar to figure 9(a). For
increasing substrate velocities, U , a new bulge can be formed at a finite distance from
the first bulge, as was also observed in the experiments. From figure 18 we expect to
find for U = 30 mm s−1 a new bulge at ≈ 6–7 mm, in our experiments this distance
was 4mm, hence in reasonable agreement.

Note that for times when θ2 is again larger than θa the solution is no longer physical
because a new bulge will start to grow. From figure 17 the final radius of the contour
of the bulge R can be found. For U = 0.01 m s−1 we find a growth time of ≈ 0.5 s.
This gives a final radius R ≈ 300 µm, in good agreement with the experiments.

When the inter-drop distance �x is reduced the distance between bulges decreases,
figure 19. Here the drop separation was 30 µm (θ1 = 1.688 rad). Now we used lm =
250 µm, as found from the experiments; the other constants have similar values as
in the previous figure. It can be seen that the wavelength λ between the bulges is
rapidly decreasing, as was also found in the experiments. At e.g. 20 mm s−1 a new
bulge will form at ≈1.2 mm, which is in reasonable agreement with the experimentally
observed value of 0.8 mm, figure 11(c). Hence with decreasing drop distance it is more
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Figure 19. Contact angle of the liquid in the ridge as a function of time for b0 = 108 µm,
�x = 30 µm (θ1 = 1.688) and θa = 1.15 for different substrate velocities. —, U = 0.01 m s−1;
– – –, U = 0.02 m s−1; · · ·, U = 0.03 m s−1. When the curves cross the thick horizontal line at
1.15 a new bulge can start.

difficult to keep the contact angle in the ridge below the advancing contact angle; the
wavelength between the bulges is decreasing.

When the drop separation is further reduced we can show that the wavelength for
similar substrate velocities is further decreasing, in agreement with the experiment.
The experiments show that even for very small �x, it is always possible to pump
enough liquid to the bulge that the contact angle in the connecting ridge is smaller
than the advancing contact angle, resulting in a small connecting ridge, figure 9(c).

5.4. Results for type I substrates; small advancing contact angle

Here the results for type I, the UV–ozone treated substrates, are discussed and
compared with the type II substrates.

The applied flow rate, Qa , was similar for both substrate classes, i.e. the standard
and the UV–ozone treated resist. Here Qa is given by

Qa = f Vd = SU, (36)

where f is the frequency of drop generation and Vd the drop volume. The only
difference is Q, the transported flow rate, which is much smaller for the type I
substrates because θa is smaller. This results in a larger printed drop on the substrate
(165 versus 108 µm), i.e. a larger initial line width b0, which gives for a fixed S a smaller
shape factor s and driving pressure �P . When we simplify the pressure difference
to �P ≈ 2σ sin θa/b0, we find from (26) that for θa = 0.42 Q is about an order of
magnitude smaller than for θa = 1.15 at similar printing conditions, i.e. similar �x.

When an ink-jet printed line is made with an initial contact angle θ1 that is larger
than θa there are two competing processes taking place. First there is the spreading
of the complete line due to capillarity until the contact angle is equal to or smaller
than θa , while the other is the growth of a small disturbance to a bulge when θ1 > θa .
Simply put, the first process is flow parallel to a cross-section of the line, while
the second is flow perpendicular to such a cross-section. On the type II substrates the
second process was shown to be dominant, i.e. spreading of the ridge due to capillarity
was negligible. This is because then Q � Qa , i.e. all the liquid that is applied at the
tip of the line can be transported to the rear. On the type I substrates the transported
flow is much smaller. When Qa is increased while Q is fixed, i.e. by increasing the
substrate velocity U , while �x remains constant, it becomes more difficult to pump
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Figure 20. Contact angle of the liquid in the ridge, θ2, for �x = 50 µm (θ1 = 0.66) and
b0 = 165 µm on a UV–ozone treated resist with θa = 0.42 as a function of time for different
substrate velocities.—, U = 0.002 m s−1; – – –, U = 0.005 m s−1; · · ·, U = 0.01 m s−1. When
the curves cross the thick horizontal line at 0.42 a new bulge will start.

the applied liquid to the rear to decrease the contact angle in the ridge to a value lower
than θa . It will be shown that above a critical velocity Uc the contact angle θ2 in the
ridge is always larger than θa . In this situation spreading of the complete line due to
capillarity will be dominant. A printed line will then have a constant cross-section, i.e.
is stable, with only a small initial disturbance at the start of the line. This situation was
observed for the UV–ozone treated substrates, figure 5 and figure 7. Note that due to
the spreading of the line the transported flow rate is even further decreased due
to the decreasing s and �x. Only when θ2 in the ridge becomes lower than θa can a
pattern of bulges be formed because the ridge then cannot spread. For fixed Q this
will occur when Qa is not large enough, as is observed in figure 8.

In figure 20 the function θ2 is plotted for the experiments on the UV–ozone treated
resist with �x = 50 µm (θ1 = 0.66), θa = 0.42 and b0 = 165 µm, where b0 is the width
of an individually printed drop. We assumed an initial length before the bulge started,
lm, of 5 × 10−4 m, i.e. a few times b0. The pressure in the bulge, Pb, is a function of θa ,
b0 and R. With changing b0 and θa we have to recalculate the fitting constants a0 and
a1 in (34), which now become a0 = 8.132 × 10−4 Pa−1 and a1 = 8.131 (Pa m)−1. In the
calculations the width of the connecting liquid ridge was assumed to be equal to b0.
For ‘large’ substrate velocities, i.e. 5 and 10 mm s−1, the contact angle in the ridge is
always larger than θa . The applied liquid flow rate is too large for θ2 to become smaller
than θa . These lines will spread due to capillarity to a line with constant width, as
observed in figure 5 and figure 7. Only for a low substrate velocity of ≈2 mm s−1 does
the angle θ2 in the ridge become smaller than θa . This calculated substrate velocity
is in good agreement with the experimentally observed minimum substrate velocity
where bulges appear, figure 8.

From figure 20 we find a distance between the bulges for U = 2 mm s−1 of ≈1 mm,
which is in good agreement with the experimentally observed distance of 0.8 mm,
figure 8. Note that the time for θ2 to become smaller than θa is much larger than in
figures 16 and 17. Hence the ridge has some time to spread, as is also observed in the
experiments of figure 8.

When the advancing contact angle is further decreased, e.g. by using longer UV–
ozone times, or using an O2 plasma, it becomes even more difficult for a line to
become unstable, i.e. an even lower substrate velocity is necessary.
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6. Conclusions
The stability of an ink-jet printed liquid line with zero receding contact angle

on a flat uniform substrate was studied both experimentally and theoretically. The
experiments and the simple model showed that an ink-jet printed line can become
unstable when the contact angle of the liquid with the substrate is larger than the
advancing contact angle θa . Then a small disturbance can grow into a bulge which
is connected by a ridge of liquid. The pressure difference generated by the moving
liquid front at the tip of the line can be sufficiently strong to pump liquid to the bulge,
causing the contact angle in the ridge to be smaller than the advancing contact angle.
Only when the contact angle in the ridge increases above θa will a new bulge start
to grow. This was found to depend on both the substrate velocity and applied liquid
volume, where the wavelength between the bulges decreases with increasing substrate
velocity and applied liquid volume.

The condition for instability, i.e. the contact angle of the liquid with the substrate
is larger than the advancing contact angle, is not a sufficient condition. When the
transported flow rate through the ridge is too small with respect to the applied flow
rate the line can be stable, i.e. the cross-section of a printed line is constant. Then
the contact angle in the ridge is always larger than the advancing contact angle and the
line spreads due to capillarity to its equilibrium width. The main dominant factor
is the advancing contact angle of the liquid with the substrate. For small advancing
contact angles the transported flow rate is strongly decreasing, which makes it more
difficult for an ink-jet printed line to become unstable. Only at very low substrate
velocities is there enough time for the line to become unstable.

I would like to thank my colleagues M. M. J. Decré, J. F. Dijksman and H. P. Urbach
for helpful discussions.
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